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1 Introduction

The Maximum Smoothness method was originally created to sove a frequently ocurring
problem in space physics, the problem of reconstructing a spectri:m from an instrument's
(TET, in our case) response functions and counting rates. The spectrum, response functions,

and counting rates are all related by the following equation:

b
() = [sEHEME i=1,n

where r; is the counting rate of type i events (events/sec), fi(E) is the instrument’s effective:
geometry factor (cm""’—ér) for type i events as a function of energy (the response {unctions),
and s(E) is the isotropic particle spectrum (particles/ cr®—sr~MeV-sec). In the ce.se of TET,
the subscript i labels events according to their range. The furctions f(E) a-e usually
determined experimentally and are assumed to be completely krown in this roport, The
measurement of these functions for TET is described in Zmuidzinas and Gehrelis, [1981].
Note that eqns. (1) do not determine s(E) uniquely ; in fact, there is an uncountable nurnber
of functions s(E) which satisfy eqns. (1) . The way information asout a spectrium s(E) is
usually presented is by specifying the averages of s(E) for n energy intervals (n = aumber of

response functions) :

E
@ 5= m L[, S(E)dE

Just as eqns. (1) do not uniquely specify s(E), they do not uniquely specify the s; 's . In order

to solve for the s;'s, one has to make some assumptions about the svectrum s(E).




II. Some Methods

Perhaps the simplest and most straightforward way of approaching this problem is by

assuming the spectrum s(E) is a step function :
s{(E) = 8;, Ej-<E<E;, j=1,n

One must choose Eo and E; so that the entire region where the response functions are
nonzero (call this region [a,b]) is covered, i.e. Eg<a and E,=b. In this case, eqns. (1) can be
writien

b
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With the definition

s
1]
—

Ey
Ay = e‘/. t,(E) dE
-

we get the following matrix equation :

(4) ri=iAiij. i=1,n

=

The A; matrix can then be inverted to yield the s;'s in terms of the r; 's. This method will be

referred to as the MI method in this report. A way to improve this method is to try to take the
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gross spectral shape into account. In space physics, spectra often have a power law form:
s(E) = AE™

Eqns. {1) are rewritten as

E
,2 xf S(E),(E)dE

r; =
| /,
g
z[ S(E)t(E)dE g,
_w By 1
_jg " x AEJ@/;S(E)dE
Y )1[: 3(E)dE
which gives

(5) r = jilAﬁSj

where

and AE; = E~E;_; . The Ay is calculated with a power law spectrum s(E) = A E. The matrix
is then inverted to calculate the §; 's. The A; 's are independent of A; the v is chosen such
that the calculated values of §; are consistent with this . This is the method presented in
Hoyng and Stevens, [1973] and will be referred to as the RMI (refined matrix inversion)
methed in this report.

Other methods solve for the S; 's by calculating a specific s(E) that satisfies eqns. (1) and




-

then integrating this s(E) over the various energy intervals. One way to calculate an s(E) is to
assume a specific functional form. For example, assume that s(E) is a linear combination of a

set of basis functions:
S(E) = Day,(®)
]=
Inserting this form in eqns. (1) gives a set of linear equations for the o; 's :

ry = iAﬂaj

=

b
where Ay = f t(E)yi(E)dE . Once the o ‘s have been calculated, the spectrum s(E) and the
a

§ 's can easily be calculated. Note that both the MI and RMI methods are special cases of this

method. The choices for the y(E) 's that correspond to the two methods are:
(MI) ¥E) = 1 E.<E<E

(RMI)  y(E) = E? E_,<E<E

Note, however, that the v in the RMI method changes.

The Maximum Smoothness method also calculates a specific s(E) ; however, the s(E) is chosen
by an extremum principle with no explicit assumptions about the functional form. The next

section describes this method.
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. The Maximmum Smoothness Method

The Maximum Smoothness method (the MS method) calculates a specific s(E) by finding

the s(E) which satisfies eqns, (1) and which minimizes

2
® 1= f [ T ] d(1og(E))

The reasons for minimizing this integral will now be discussed. We would like the s(E) that we

choose to have the following properties :

1) s(E) is a smooth, continuous function
2) If a power law is consistent with the counting rates 1,

we would like s(E) to be that power law.

First of all, we must define what we mean by "smooth". After defining "smooth”, we can always
satisfy requirement 1) by choosing the "smoothest" possible s(E). Requirement 2) will
automatically be satisfied if power laws are the "smoothest" possible functions according to
our definition. OQur intuitive notion of "smoothness" tells us that straight lines are the
"smoothest" functions - not power laws. However, power laws are straight lines on a log-log

plot. This can be expressed as

d(log(s(E = constant
d{log(E))

We shall therefore consider s(E) to be smooth if its derivative is nearly constant; i.e. its

d? log( s(E) )

second derivative, & log(E) )2 is small. The integral

2
f | ) } 10g(E))




e

Is thus a measure of the "smoothness” of s(E) on the interval [a,b]. The second derivative is

squared to make both positive and negative 'alues count equally.
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1IV. Mathematics of the Maximum Smoothness Method

This section treats the mathematical problem of finding a spectrum which satisfies eqns.
(1) and minimizes the integral given in eqn. (8). We first treat a simpler problem whose

solution is needed to solve the problem above. The problem: Find the y(x) which satisfies

b
4 = [a@y(dx
a
and which minimizes
b 4 2
= e

This can be solved using variational calculus with Lagrange multipliers {see Mathews and
Walker, [1970]). We need to consider the following integral:

b 2
J = f H%z(z}"] - igz}\igi(x)y(x) dx .

The A; 's are the Lagrange undetermined multipliers; the factor of 2 is included for
convenience. To find a differential equation for y(x), we perform a variation in y and set the

variation in J to zero. We get:

Yy @ y+dy

dydx

+
ﬂ\ -
m-‘
¢
=]

Fr ) RAgi(x)

—




-8~
First consider variations dy that satisfy

6y(a) = oy(b) = Sa) = W) =0 .

The terms in 6J which are left over from the partial integrations varish and we are left with

the integral term equal to 0. From this, we conclude that

M S =P

i=1

Now, consider ?ariations 0y which vanish at the endpoints a and b but whose derivatives are
arbitrary at these endpoints. Since the integral term has already b:2en established to be 0,

we are left with

b

= = ial.d—dl -
0 aJ 2 o dx .
from which we conclude that
izx —] fl -
® 3@ = o) =0
Similarly,
.d_al/ = _d_EL =
(9) ax3 \a) axs (b) 0

We must now integrate the differential equation for y. First, we need notation for the

integrals of g;(x) :

G = [ GEVigax

and




GO(x) = g(x)
With this notation, we have (from eqns. 7, 8, and 9)

(10)  y(x) = a+fx+ 3 AGHE)

i=1

along with

(1) 3 AGH(b) = o
i=1

(12) 2 MGR(b) = 0
i=1

Inserting (10) into the counting rate equations (eqns. 1) gives

b b b
(18 & = o fHx + [ xe@ax + jg N [eP®e@ax i=1n

Equations 11, 12, and 13 are n+2 equations for a, 8, and A, J =1, n. Figure 1 shows these
equations in a matrix form. This matrix is inverted to calculate q, B, and the A ‘s , which can
then be used to calculate y(x) according to (10).

We will now return to the original problem. First of all, we make the following

substitutions:

x = log(E), a=1log(a), B =log(b)

y(x) = log(s(E))
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ti(x) = E§(E)

With these substitutions, the problem becomes: Find the y(x) which satisfies

B
(149 n = J exp(y(x))x)dx

[

and minimizes
8 2
_ d?
(15) 1= [[—%]dx .

If we apply variational calculus to this problem, we obtain a nonlinear differential equation
which cannot be solved numerically since it contains the Lagrange multipliers which are
unknown. We will instead develop an iterative scheme t:o- calculate y(x). Assume we have an
approximation to y(x), say y®(x). From y® 1)(x) we would like to calculate an improved

approximation y®)(x), and then y®*!)(x), ete. As this procedure converges, we will have

Iy(“)(x)-y(n")(x) !<<1. In this case,

exp( y¥")(x) ) = exp(y®(x)) - exp( y®)(x) — y@-1(x) )

™ exp( o 0(x) ) [1 + ™) -y |

Using this approximation in the counting rate equations as a strict equalily, we obtain

8
ro= [exp(y@0(0)| 1+ ¥(x) - o) Jryx)ax

or




I

B
(18) o = [ yii)g(x)ax
wﬁere

4@

B
- f gi‘“’(X)[ 1 - y'a~1)(x) ]dx

gf)(x) = exp(y®(x) )t'y(x) .

Note that gf(x) and d{® can be calculated entirely from r;, £y(x), and y® 1)(x). We must

therefore find the y{®)(x) which satisfies eqns. (16) and which minimizes
g 42y 2
= dx . -
= [‘dez ]

This is simply the problem solved in the beginning of this section. To start ‘tbis iteration
process, we use a y)(x) of the form y{!(x) = a + 7x . The initial a and ¥ are not critical ;
better choices might require one less iteration for convergence. In our case, a and ¥y are

chosen to minimize

Xlay) = i‘ [MJE’C’ r

i=1

where ry = ¢j/ 7, T = livetime (c; events of type i are observed in time 7), and

8
W/ T = fexp( a + yx )fi(x)dx

a




V. Comparison of Methods

A comparisbn of the Maximum Smoothness (MS), the Matrix Inversion (MI), and the

Refined Matrix Inversion (RMI) methods was made. The following steps were taken:

1) A spectrum s(E) was selected - for example, a

power law spectrum, an exponential spectrum, ete.

R) The averages of the selected spectrum s(E) in
each of the energy bins was calculated. These are the

so-called "true fluxes”.

3) The spectrum s(E) was multiplied by the response

functions and integrated to yield the count rates r; .

»

4) The fluxes in the energy bins were calculated with
each of the three methods - MS, RMI, and MI.

5) The fluxes calculated in step 4) were compared to the
"true"” fluxes calculated in step 2). The average absolute
error (defined below) was used as a figure of merit in

this comparisen.

Average absolute error: For each energy bin, the relative error of the calculated Alux (step 4)
as compared to the true flux (step 2) was calculated (for each method). The absolute values
of these relative errors were then averaged over all of the energy bins to yield the average
absolute error for each method on the particular trial spectrum.

Both the MS and RMI methods calculate fluxes consistent with a power law spectrum if
some power law is consistent with the counting rates. The MI method is therefore the only

method with a nonzero error for power law trial spectra. Figure 2 shows the average absolute
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error of the MI method as a function of ¥ { s(E) = AE™ ). As ¥ increases, the approximation
that s(E) is constant in each energy bin becomes worse, hence the error gets larger.

The average absolute error is plotted against spectrum number in Figure 3. The
spectrum number simply labels the different trial spectra that were used in the comparison.
They are plotted, along with the Maximum Smoothnes reconstruction of that trial spectrum,

in Figures 4 through 10. The trial spectra were:

1) Exponential, s(E) = exp(—E/ 10Mev). In this case, both the MS and RMI methods give

similar errors, while the Ml method is muéh worse.

. .
2) Gaussian, s(E) = exp[— % [lo E; 510 20] ] The MS method is much better than the

other two in this case.

3) These spectra are all power laws with a break - i.e. there are two v 's, one for low

energies and cne for high energies. The following functional form was used:

s(E) = A

1 E" 1 E |™
1+ (E/Ep)" {Eo 1+ (E/Ep)™ [E{]
for E <Eg, S(E) = A(E/ Eg)"*
for E >>Eq, s(E) = A(E/ Eg)"®

In all cases, A was chosen to be 1 ( this factor is unimportant since all methods are
homogeneous - if the spectrum is multiplied by a factor of 2, so are the fluxes that these
three methods calculate), and n (which determines how sharp the break is) was chosen to be

5.
a)v = =1, 7 = =3, and Eo = R0 MeV . MS and RMI are fairly close in this case.

b) 71 = =1, 72 = =3, and Eg = 70 MeV. RMI is much worse than MS in this case.
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c) 71 = =3, 72 = =1, and By = 20 MeV . As before, MS is much better than either of the

other two methods,

4) Step function spectrum. This is an example of a spectrum that the MI method
calculates exactly. It was tried mainly to compare the MS and RMI methods. The MS method is

much better than the RMI method in this case.

2
5) Gaussian + Power Law, s(E) = 500E3 + exp[ -}é[lﬂ(E) _olg g(16.6)} . Although none

of the methods come very close, the MS method is by far the best. This example also serves to

show how different spectra can be and yet give the same counting rates.




~15-

V1. Other Applications

The Maximum Smoothness method can also be used to find a smooth function y{x) which
passes through a set of points (xuy), i=1,n , ie. y(x)=y;. We need to write these

constraints in an integral form:

b
wi= f y(E)6(x—x)dx .

These are analogous to the counting rate equations; the "response” functions in this case are
Dirac delta functions. We then find the y(x) which satisfies these equations and which

Jlg=

The solution y(x) turns out to be a cubic spline interpolation of the points (x;,y;) with the

boundary conditions

LYy = Ly = £y = Py
a2 ?) = gE P = (@) = 5 =0

This method was used to interpolate the response functions for TET. This method can be
generalized to match derivatives of y(x) in addition to values of y(x) by using derivatives of

the Dirac delta functions as "response functions”.
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FIGURE CAPTIONS

Figure 1 The matrix equation which occurs in the solution of the Maximum
Smoothness method.

Figure 2 Average absolute error of the MI method as a function of
power law gamma.

Figure 3 Average absolute error of the three methods (MI, RMI, and MS)
for all of the different trial spectra.

Figures 4-10 Plots of the trial spectra along with the Maximum Smoothness
“econstruction. Horizontal bars represent the avera e fluxes in the
energy bins of the plotted spectrum.

Figure 11 Plot of the response functions used (TET response functions;
D1-3 to D1-7; 0.5 MeV Tower Timit on D1 and D2 energy loss, 2.5 MeV
upper 1imit). Only the first four (D1-3 to D1-6) were used in the
spectrum reconstruction since the last one (D1-7) is not determined

well enough in the high energy region.
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